

UNIVERSITY OF LIFE SCIENCES "KING MIHAI I" FROM Timisoara

Multidisciplinary Conference on Sustainable Development 25-26 May 2023

THE CONTENT IN BIOACTIVE COMPOUNDS OF OIL BY-PRODUCTS

Gina Cecilia PISTOL, Valeria Cristina BULGARU, Daniela Eliza MARIN, Andrei Cristian ANGHEL, Ionelia TARANU

Laboratory of Animal Biology, National Institute for Research and Development for Animal Biology and Nutrition – IBNA Balotesti e-mail: gina.pistol@ibna.ro

INTRODUCTION

- weaning is a very difficult period for piglets, in which the nature and quality of feed have a great influence on the development of the digestive and immune systems; is correlated with a transient increase in the local (intestinal) inflammatory responses, associated with digestive disorders, weakening of the body, increased susceptibility to infections that lead to economic losses.
- European Union banned the use of antibiotics as growth promoters in farm animals nutrition (2006).
- research topic: finding of nutritional solutions (rich in bioactive compounds, cheap) to prevent or reduce intestinal diseases and mortality in post-weaning piglets and to replace the in-feed antibiotics.

AIM: to investigate some agro-industrial by-products resulted from oil industry (grape seed meal and camelina meal), which could be used as alternatives to antibiotics in weaning piglets.

MATERIALS AND METHODS

- -camelina meal (C1) and camelina seeds (C2) were provieded by Savoarea Soarelui, Oradea, Romania; grape seed meal (GSM) was obtained from Oleomet SRL; after oil extraction from camelina seeds, the camelina meal was air-dried and was grinded with Cyclone Mill -MC5 mill; mixtures with different inclusion rates of meals (GSM, C1 and C2) were obtained;
- -the basic chemical composition of meals (crude protein, crude fat, crude fibers, and ash) was analysed by Weende method; the macro- and micro-mineral composition was determined by atomic absorbtion spectrometry
- -the concentration of total polyphenols was determined by Folin-Ciocalteu method; the polyunsaturated fatty acids (PUFAs) were analysed by gas chromatography; the antioxidant capacity was determined using DPPH method.

RESULTS

The basic chemical composition of meals

the amount of crude protein was ranged between 10.5g/100g sample (grape seed meal) and 38.7g/100g sample (camelina C1 meal).

the percentage of fat was high in camelina C2 meal (16.1%)

grape seed meal is rich in fiber (34.7%)

Sample	Analyzed parameter (%) **							
no. *	DM	СР	CF	CEL	Ash			
1	92.9	38.7	8.5	13.5	4.2			
2	91.9	10.5	6.1	34.7	2.9			
3	92.1	32.6	16.1	14.4	4.2			
4	92.7	32.4	7.9	18.8	3.9			
5	92.6	25.1	7.4	26.4	3.7			
6	92.3	18.8	6.4	30.8	3.2			
7	92.3	27.3	13.7	20.7	4.0			
8	92.2	21.7	11.0	25.4	3.6			
9	92.2	16.7	8.6	33.6	3.3			

C2+GSM (3:1) mix; 8: C2 + GSM (1:1) mix; 9: C2 + GSM (1:3) mix

The composition in fatty acids of meals

-all analysed samples have a very high percentage (> 50%) of PUFAs; -meals and mixtures with a high camelina content are richer in omega-3 PUFAs -grape seed meal and mixtures based on a large amount of grape seed meal have a high content of omega-6 PUFAs

a riight content of officea of office									
Sample	Type of fatty acid **						Type of PUFA		
no.*	SFA	MUFA	PUFA	SFA /UFA	PUFA /MUFA	Ω3	Ω6	Ω6/Ω3	
1	16.8	29.5	52.6	0.21	1.78	30.5	22.1	0.7	
2	14.8	15.8	68.5	0.18	4.33	1.6	66.9	40.5	
3	12.9	30.1	56.5	0.15	1.88 (31.9	24.6	0.8	
4	12.6	27.3	59.0	0.15	2.16 (27.2	31.8	1.2	
5	12.8	22.5	63.9	0.15	2.83	19.8	44.2	2.2	
6	13.9	19.1	66.2	0.16	3.45	11.7(54.4	4.6	
7	12.4	28.6	58.3	0.14	2.04 (28.4	29.9	1.1	
8	12.9	25.4	61.0	0.15	2.40	23.2	37.7	1.6	
9	13.0	22.1	64.3	0.15	2.91	15.7	48.7	3.1	

*samples: 1: C1; 2: GSM; 3: C2; 4: C1+GSM (3:1) mix; 5: C1+GSM (1:1) mix; 6: C1+GSM (1:3) mix; 7: C2+GSM (3:1) mix; 8: C2+GSM (1:1) mix; 9: C2+GSM (1:3) mix

** SFA-saturated fatty acids; MUFA-monounsaturated fatty acids; PUFA- polyunsaturated fatty acids)

The composition in macro- and micro-elements

GSM has the highest content of calcium and copper Both C1 and C2 camelina meals had a high content of phosphorus, potassium, iron, manganese and zinc

Sample	Ca	Р	K	Mg	Cu	Fe	Mn	Zn	Na
no. *	(%)	(%)	(%)	(%)	ppm	ppm	ppm	ppm	ppm
1	0.4	0.6	(1.3)	0.4	3.8	229.0	30.2	(58.7)	34.9
2	0.6	0.3	0.6	0.2	5.7	70.7	12.5	16.7	34.0
3	0.3	0.6	1.0	0.4	2.4	196.1	26.5	67.1	20.9
4	0.4	0.5	1.0	0.3	3.8	194.6	25.6	48.6	50.1
5	0.5	0.4	0.8	0.2	4.5	160.1	21.5	39.8	46.9
6	0.6	0.4	0.6	0.2	(5.7)	117.3	17.4	28.7	43.5
7	0.3	0.6	(0.9)	0.4	2.9	171.2	22.5	55.1	45.2
8	0.4	0.5	0.6	0.3	4.1	137.3	19.9	43.5	31.4
9	0.6	0.4	0.5	0.2	4.2	103.7	17.1	31.8	26.3

* samples: 1: C1; 2: GSM; 3: C2; 4: C1+GSM (3:1) mix; 5: C1+GSM (1:1) mix; 6: C1+GSM (1:3) mix; 7: C2+GSM (3:1) mix; 8: C2 + GSM (1:1) mix; 9: C2 + GSM (1:3) mix

The composition in poyphenols and the antioxidant activity of meals

GSM and mixes with high inclusion of GSM had the highest content in total polyphenols and the highest antioxidant activity

* samples: 1: C1; 2: GSM; 3: C2; 4: C1+GSM (3:1) mix; 5: C1+GSM (1:1) mix; 6: C1+GSM (1:3) mix; 7:

C2+GSM (3:1) mix; 8: C2 + GSM (1:1) mix; 9: C2 + GSM (1:3) mix

CONCLUSIONS: both camelina and grape seed meal had an increased content in polyphenols and PUFAs, compounds with anti-inflammatory and anti-oxidant activities; these by-products can be used as replacers of the in-feed antibiotics in the nutrition of piglets after weaning ACKNOWLEDGEMENT: This research was supported by funds from the PN-III-P2-2_1-PED-2021-1989 - PED 660 project and from the National

Research Development Project to Finance Excellence (PFE) - 8/2021 granted by the Romanian Ministry of Research, Innovation and Digitalization

^{**}DM = dry matter; CP = crude protein; CF = crude fat; CEL = cellulose